
ASToFra Developers Manual
Contents
1 Introduction 1

2 Conditions for using the libraries 1

3 Obtaining the libraries 2

4 Overview of libraries 2

5 Sample code 3
5.1 Basic object information . 3
5.2 Texture information . 4
5.3 Generate footprint of model . 6
5.4 Render preview of model . 7

5.4.1 Renderer3DControl . 10
5.4.2 Load object file . 12
5.4.3 Change livery . 12
5.4.4 Show statistics . 13
5.4.5 Change background color 13

6 Support 13

7 User license 14

1 Introduction
ASToFra stands for Arno’s Scenery Tool Framework and it is the underlying
set of libraries for reading, writing and manipulating Flight Simulator models
and sceneries that are used by my tools like ModelConverterX and scenProc.
This developers manual explain how other developers can use these libraries in
their tools as well, for example because they want to render models or extract
information from them. The manual contains sample code on how to do common
activities with the libraries. If you have another use case that is not covered by
the manual, don’t hesitate to contact me.

2 Conditions for using the libraries
My tools that use these libraries are freeware. Therefore developers of other
freeware tools are free to use the libraries in their tools as well. I would appre-
ciate it if you let me know when you use my libraries in your tools. That also

1

allows me to information you about important bug fixes or other changes. Just
contact me by email.

If you want to use my libraries in a tool that is not freeware, please contact me
beforehand and we can discuss the possibilities.

3 Obtaining the libraries
To obtain the current version of the software libraries, simple download the
latest development release of ModelConverterX. You can take the relevant DLL
files for your application from ModelConverterX. Your IDE, e.g. Visual Studio,
should help you in copying over relevant dependencies of the libraries you want
to use, as some of the libraries depend on others. But they are all contained in
the ModelConverterX development release.

4 Overview of libraries
The framework consists of multiple libraries, this section gives an overview which
functionality is part of which library. You might need different libraries from
this list in your application.

• ASToFra.Coordinates contains logic related to conversion of coordi-
nates between WGS84 geodetic, round and flat earth.

• ASToFra.ErrorHandler contain logic for reporting errors to the Scenery-
Design.org bug tracker system.

• ASToFra.EventLog contains the controls and logic of the event log as
shown at the bottom in ModelConverterX.

• ASToFra.FSUtils contains utilities that contain specific logic for FSX
and Prepar3D.

• ASToFra.Geometry contains the logic that is used to represent vertices,
triangles and other geometry.

• ASToFra.Interface contains the interfaces that are used between the
different libraries.

• ASToFra.Object.DataModel contains the logic that is used to repre-
sent an object or scenery internally in the tools.

• ASToFra.Object.Processor contains the logic to process and modify
objects.

• ASToFra.Object.Reader contains the logic to read objects and scenery
from different formats.

• ASToFra.Object.Renderer contains the logic that renders a 3D pre-
view of the object on screen.

• ASToFra.Object.Writer contains the logic to write objects and scenery
to different formats.

2

mailto:arno@scenerydesign.org

• ASToFra.ParticleEffects contains the logic about particle effects as
used in FX files.

• ASToFra.Texture.Object contains the logic to represent texture infor-
mation and to search for textures.

• ASToFra.Texture.Reader contains the logic to read textures from dif-
ferent formats.

• ASToFra.Texture.Writer contains the logic to write textures to differ-
ent formats.

• ASToFra.Utils contains utilities that are used in the other libraries.

• ASToFra.XPUtils contains utilities that contain specific logic for X-
Plane.

5 Sample code
In this chapter various code samples are given for common activities that can
be performed using the libraries.

5.1 Basic object information
This sample command line application loads a library BGL and prints the basic
information of all objects in the library to the console.

1 using System ;
2 using System . Collections . Generic ;
3 using ASToFra . FSUtils ;
4
5 namespace object_info_basic
6 {
7 public static class Program
8 {
9 public static void Main(string [] args)

10 {
11 BglXStatsReader statisticsReader = new BglXStatsReader ();
12
13 List < ObjectStatistics > objectStatistics = statisticsReader .

ReadStatistics (args [0]);
14
15 foreach (ObjectStatistics statistics in objectStatistics)
16 {
17 Console . WriteLine ("Name = {0}", statistics .Name);
18 Console . WriteLine ("GUID = {0}", statistics .GUID);
19 Console . WriteLine ("FS version = {0}", statistics . Version)

;
20 Console . WriteLine ("Has animation = {0}", statistics .

HasAnimations);
21 Console . WriteLine (" Number of LOD = {0}", statistics .LOD.

Count);
22 Console . WriteLine (" Number of textures = {0}", statistics .

TextureList . Count);
23 Console . WriteLine (" Bounding box min = {0:0.00} , {1:0.00} ,

{2:0.00} ",
24 statistics . BoundingBox .min.x, statistics . BoundingBox .

min.y, statistics . BoundingBox .min.z);
25 Console . WriteLine (" max = {0:0.00} , {1:0.00} ,

{2:0.00} ",
26 statistics . BoundingBox .max.x, statistics . BoundingBox .

max.y, statistics . BoundingBox .max.z);
27 Console . WriteLine ();
28 }
29 }

3

30 }
31 }

The code first creates an instance of the BGLXStatsReader object, this class
can be used to retrieve basic statistics of all objects in a BGLComp library
BGL file (either FS2004, FSX or Prepar3D). With the ReadStatistics a list
of ObjectStatistics objects is retrieved for the filename that is passed as
argument to the console application.

Next this list is looped and for each object that information from the ObjectStatistics
object is printed to the console. The object does contained more information like
the names of the textures and details about the number of drawcalls, vertices
and triangles per LOD. But for the simplicity of this example that information
is not written to the console.

Figure 1 shows the output this sample program generates.

Figure 1: Sample output of basic object information sample project

5.2 Texture information
This sample command line application loads an object and retrieves all tex-
tures used by the object and prints the information of these textures to the
console.

1 using System ;
2 using ASToFra . Object . Reader ;
3 using ASToFra . Object . DataModel ;
4 using ASToFra . Texture . Object ;
5 using ASToFra . Texture . Reader ;
6 using ASToFra . Interfaces ;
7
8 namespace texture_info
9 {

10 public static class Program
11 {
12 public static void Main(string [] args)
13 {
14 ObjectReaderFactory readerFactory = new ObjectReaderFactory (

null , null);

4

15 AllObjectReader allObjectReader = new AllObjectReader (
readerFactory);

16 TextureCache textureCache = new TextureCache (new
AllTextureReader () , null , new TextureSearcher ());

17
18 Scenery scenery = allObjectReader .Read(args [0]);
19
20 foreach (ObjectModel objectModel in scenery . ObjectModelList)
21 {
22 Console . WriteLine (" Object | Name = {0}", objectModel .

Name);
23
24 foreach (string texture in objectModel . TextureList)
25 {
26 ITextureImage textureImage = textureCache .

GetTextureImage (texture , args [0] , "");
27
28 Console . WriteLine (" Texture | Name = {0}", texture);
29 Console . WriteLine (" | Width = {0}",

textureImage . Width);
30 Console . WriteLine (" | Height = {0}",

textureImage . Height);
31 Console . WriteLine (" | Has mipmaps = {0}",

textureImage . HasMipMaps);
32 Console . WriteLine (" | DXT compression = {0}",

textureImage . DxtCompression);
33 }
34
35 Console . WriteLine ("");
36 }
37 }
38 }
39 }

So how does this application work?

First an instance of the ObjectReaderFactor\verbAllObjectReader| class is
created. This class can be used to read an object from any of the formats that is
supported. If you want to read from one specific format only, you can also use the
reader class that is specific for that format. The AllObjectReaader class takes
an argument of type ObjectReaderFactory, this factory class is used to initial-
ize the specific readers and their post-processing. Since we will only read simple
objects from MDL/BGL format here, without the need for post-processing, we
can pass null arguments to the ObjectReaderFactory constructor.

Next an instance of the TextureCache class is made. This class can be used to
retrieve textures, it does cache the loaded textures to prevent them being read
from disk all the time. The constructor takes three arguments:

• An instance of a texture reader that can read the textures into memory.
We use an instance of AllTextureReader as that class can read any of
the formats that are supported by the library.

• An instance of a cube texture reader, since we are not interested in cube
textures in this sample we pass null.

• An instance of the texture searcher class, this class can find textures on
your hard drive using searching logic similar to flight simulator uses.

Then the filename passed as argument to the console application is used to
read a Scenery object using the AllObjectReader instance. And in a loop all
ObjectModel instances within that scenery are processed. For all the textures in
these objects the instance of the ITextureObject is retrieved from the texture

5

cache. If the texture cache does not have this texture stored, it will used to
the texture searcher to locate it on disk and then load it with the texture
reader instance. The GetTextureImage class has 3 arguments, the filename of
the texture (without path), object filepath which is used as initial location for
searching and optionally the name of the livery to use.

Finally some information about the retrieved texture are printed to the console,
like the size of the texture, whether it has mipmaps and which DXT compression
is used on the texture.

Figure 2 shows the output this sample program generates.

Figure 2: Sample output of texture information sample project

5.3 Generate footprint of model
This sample command line application loads an object, generates the footprint of
the object and then prints information about the footprint to the console.

1 using System ;
2 using System . Collections . Generic ;
3 using ASToFra . Geometry ;
4 using ASToFra . Object . DataModel ;
5 using ASToFra . Object . Processor ;
6 using ASToFra . Object . Reader ;
7
8 namespace generate_footprint
9 {

10 public static class Program
11 {
12 public static void Main(string [] args)
13 {
14 ObjectReaderFactory readerFactory = new ObjectReaderFactory (

null , null);
15 AllObjectReader allObjectReader = new AllObjectReader (

readerFactory);
16 FootprintGenerator footprintGenerator = new

FootprintGenerator ();
17
18 Scenery scenery = allObjectReader .Read(args [0]);
19
20 foreach (ObjectModel objectModel in scenery . ObjectModelList)
21 {

6

22 List <Triangle > footprintTriangles = footprintGenerator .
GenerateFootprint (objectModel , 0.1);

23
24 Console . WriteLine (" Object : {0}", objectModel .Name);
25 foreach (Triangle triangle in footprintTriangles)
26 {
27 Console . WriteLine ("> [x ={0:0.000} y ={1:0.000}] [x

={2:0.000} y ={3:0.000}] [x ={4:0.000} y ={5:0.000}]
",

28 triangle . Vertices [0]. Coor.x, triangle . Vertices
[0]. Coor.y,

29 triangle . Vertices [1]. Coor.x, triangle . Vertices
[1]. Coor.y,

30 triangle . Vertices [2]. Coor.x, triangle . Vertices
[2]. Coor.y);

31 }
32 }
33 }
34 }
35 }

Let’s walk through the source code in steps.

First an instance of the AllObjectReader class is created. This class can be
used to read an object from any of the formats that is supported. If you want
to read from one specific format only, you can also use the reader class that is
specific for that format. As explained in section 5.2 we can pass an instance
of the ObjectReaderFactory class as argument here that is made using null
input for the constructor.

Next an instance of the FootprintGenerator class is made. This is the class
that can calculate the footprint from an object.

Then we load the scenery object from the file that is passed as argument to the
command prompt application. And we iterate over all ObjectModel instances in
the scenery to calculate the footprint for each of them. The GenerateFootprint
function takes the ObjectModel instance as argument and you can also specify
the minimum area (in square meters) that geometry should have to be included
in the footprint. In this example it has been set to 0.1 square meter, but if you
want to reduce the complexity of the footprint you can increase this value as
well.

Finally the X and Y position of each triangle in the footprint is printed to
the console output so that you can see the footprint that was generated. If
you would use the footprint in your own tool, you would probably render the
triangles to your screen or use the information otherwise.

Figure 3 shows the output this sample program generates.

5.4 Render preview of model
In this example a more complex application is discussed. It is an application
that uses the preview control of ModelConverterX to be able to visualize 3D
objects. Figure 4 shows how this application looks like.

The application is created using the Renderer3DControl control. When you
place this control in your WinForms application you will get a fully functioning
3D preview. Four buttons have been placed on the form as well that are used
to show how you can interact with the preview control or with the object that

7

Figure 3: Sample output of generate footprint sample project

Figure 4: Example application using the 3D preview of ModelConverterX

8

is being shown. Below the full source code of this application is shown, but
in the sections below we will discuss a different part of the source code at a
time.

1 using System ;
2 using System . Windows . Forms ;
3 using ASToFra . Object . Reader ;
4 using ASToFra . Object . Renderer ;
5 using ASToFra . Object . Processor ;
6 using ASToFra . Interfaces ;
7 using ASToFra . Object . DataModel ;
8 using System .IO;
9 using ASToFra . FSUtils ;

10 using ASToFra . Texture . Object ;
11 using ASToFra . Texture . Reader ;
12 using ASToFra . Object . DataModel . Interfaces ;
13
14 namespace viewer_sample
15 {
16 public partial class Form1 : Form , IReceiveObjectChanged ,

ITransmitObjectChanged
17 {
18 public event ObjectChanged ObjectChanged ;
19
20 readonly ITextureCache _textureCache ;
21 readonly AllObjectReader _objectReader ;
22 ObjectModel _currentObject ;
23
24 public Form1 ()
25 {
26 InitializeComponent ();
27
28 _textureCache = new TextureCache (new AllTextureReader () , new

DdsLoader () , new TextureSearcher ());
29 renderer3DControl1 . InitializeHandlers (_textureCache , null ,

new RendererState ());
30
31 // Passing null here for the textureWriter as I now that the

reading logic does not use it.
32 IObjectProcessorFactory processFactory = new

ObjectProcessorFactory (_textureCache , null);
33 ObjectReaderFactory readerFactory = new ObjectReaderFactory (

processFactory , _textureCache);
34 _objectReader = new AllObjectReader (readerFactory);
35
36 FsUtilsSettingsWrapper fsSetting = new FsUtilsSettingsWrapper

();
37 fsSetting . AutoDetectSettings ();
38
39 EventDistributor . Instance . RegisterComponent (this);
40 }
41
42 private void Form1_FormClosing (object sender ,

FormClosingEventArgs e)
43 {
44 EventDistributor . Instance . UnRegisterComponent (this);
45 }
46
47 public void OnObjectChanged (ObjectChangeLevel level , object obj ,

object sender , string changeDescription)
48 {
49 _currentObject = (ObjectModel) obj;
50 }
51
52 private void RaiseObjectChanged ()
53 {
54 if (ObjectChanged != null)
55 {
56 ObjectChanged (ObjectChangeLevel .

MaterialChangedTextureReload , _currentObject , this , "
New livery ");

57 }
58 }
59

9

60 private void cmdSelect_Click (object sender , EventArgs e)
61 {
62 OpenFileDialog openFile = new OpenFileDialog ();
63 if (openFile . ShowDialog () == DialogResult .OK)
64 {
65 _objectReader . ReadASync (openFile . FileName);
66 }
67 }
68
69 private void cmdColor_Click (object sender , EventArgs e)
70 {
71 ColorDialog color = new ColorDialog ();
72 if (color . ShowDialog () == DialogResult .OK)
73 {
74 Renderer3DSettingsWrapper settings = new

Renderer3DSettingsWrapper ();
75 settings . BackgroundColor = color . Color ;
76 renderer3DControl1 . Refresh ();
77 }
78 }
79
80 private void cmdLivery_Click (object sender , EventArgs e)
81 {
82 if (_currentObject != null && _currentObject . Liveries . Count >

1)
83 {
84 int index = _currentObject . ActiveLiveryIndex + 1;
85 if (index >= _currentObject . Liveries . Count)
86 {
87 index = 0;
88 }
89
90 _currentObject . ActiveLiveryIndex = index ;
91 RaiseObjectChanged ();
92 }
93 }
94
95 private void cmdStats_Click (object sender , EventArgs e)
96 {
97 if (_currentObject != null)
98 {
99 ObjectStatistics stats = _currentObject . GetStatistics ();

100 StatisticsLod lod = stats .LOD[stats .LOD. Count - 1];
101 StringWriter writer = new StringWriter ();
102 writer . WriteLine ("LOD: {0}", lod. Value);
103 writer . WriteLine (" Triangles : {0}", lod. Triangles);
104 writer . WriteLine (" Vertices : {0}", lod. Vertices);
105 MessageBox .Show(writer . ToString ());
106 }
107 }
108 }
109 }

5.4.1 Renderer3DControl

When you insert the Renderer3DControl in your WinForms application you
basically have a functioning preview automatically. When you load an object
using the AllObjectReader the preview control will respond to the event that
is raised when the object has finished loading and show this object in the pre-
view.

For the Renderer3DControl instance to work correctly you need to call the
InitializeHandlers function directly after the instance has been created, e.g.
in the constructor of your form. This function takes three arguments:

1. A TextureCache object that is used by the preview to retrieve the object
textures from. The instance of the TextureCache is made in the construc-

10

tor of the application and passed to the InitializeHandlers function.

2. An ErrorHandler object that is used to report errors, since reporting
errors is disabled in this sample we pass null.

3. An RendererState object that is used by the preview to retrieve the state
of visibility conditions from. We create a new instance of this class to pass
to the function.

In the constructor of the form we also create instances of some helper class that
the control uses. The most import one is the AllObjectReader class, as this is
the class that reads an object model into memory so that the preview can display
it. As the AllObjectReader needs an instance of the ObjectProcessorFactory
class as well, we create an instance of that class as well. This factory class is
used for the post-processing after the object has been loaded. It for exam-
ple makes sure that textures with an alpha channel are setup correctly. The
ObjectProcessorFactory constructor takes two arguments, the first is the
TextureCache that we already created for the preview control itself. The second
argument is for a TextureWriter, but since we don’t need to write textures for
the preview we pass a null for that one.

To make sure that effect file in the FS effects folder are found correctly we also
let the application detect where FS is installed. This is done by calling the
AutoDetectSettings function on the |FSUtilsSettingsWrapper| class.

Finally we need to register our form with hte EventDistributor class. This
makes sure we can send and receive events with others. This is used in some
actions later on where we have updated the object and want to inform the
preview control about it. The form also contains two helper functions to work
with these events.

The first helper function receives an event once the object has changed, for exam-
ple when the reader has finished reading the object. It stores the ObjectModel
instance of the new object in a variable, so that we can use it in other func-
tions.

1 public void OnObjectChanged (ObjectChangeLevel level , object obj , object
sender , string changeDescription)

2 {
3 _currentObject = (ObjectModel) obj;
4 }

The second helper function raises an event once we have modified the object our-
self. In this case the ObjectChangeLevel is set to MaterialChangedTextureReload
since we will use this function when we change the livery later on. The preview
control will be trigged by this event to reload its textures.

1 private void RaiseObjectChanged ()
2 {
3 if (ObjectChanged != null)
4 {
5 ObjectChanged (ObjectChangeLevel . MaterialChangedTextureReload ,

_currentObject , this , "New livery ");
6 }
7 }

11

The Renderer3DControl also has some properties that you can set from the
IDE. These control how the control itself behaves. The most relevant properties
are:

• ShowToolbar controls if a toolbar is shown at the top. In this toolbar
there are buttons to toggle if normals, a grid, etc. are shown. If you
disable the toolbar the users can not modify how the object is rendered
by themselves. Unless you modify these properties from your source code.

• ShowStatusbar controls if a statusbar is shown at the bottom. In this
statusbar you can see the rotation mode that is selected and information
while an object is loaded into the preview.

5.4.2 Load object file

Once you have added the Renderer3DControl to your application one of the
first things you want to do is to load an object into the preview.

With all the class that we need instantiated, all we have to do is to select the
file we want to load and ask the AllObjectReader to load this file. The reader
will automatically generate the event that triggers the preview to update itself.
Below is the code that shows the file selection dialog and then ask the reader to
load that file asynchronous.

1 private void cmdSelect_Click (object sender , EventArgs e)
2 {
3 OpenFileDialog openFile = new OpenFileDialog ();
4 if (openFile . ShowDialog () == DialogResult .OK)
5 {
6 _objectReader . ReadASync (openFile . FileName);
7 }
8 }

5.4.3 Change livery

With the Next livery button on the form you can tell the preview that it should
show the next livery for the loaded object. This will only work if you have
loaded an aircraft model that contains multiple liveries of course. Below is the
source code behind this button.

1 private void cmdLivery_Click (object sender , EventArgs e)
2 {
3 if (_currentObject != null && _currentObject . Liveries . Count > 1)
4 {
5 int index = _currentObject . ActiveLiveryIndex + 1;
6 if (index >= _currentObject . Liveries . Count)
7 {
8 index = 0;
9 }

10
11 _currentObject . ActiveLiveryIndex = index ;
12 RaiseObjectChanged ();
13 }
14 }

So what happens? First it is checked if we have an object loaded and if that
object has multiple liveries. If that is the case the index of the active livery is
increased by one. If the new index is greater or equal to the number of liveries,
we reset to index to zero. This way we cycle through all liveries. This new

12

livery index is set on the object and then we raise an event that we changed the
object. This will force the preview to update the livery.

5.4.4 Show statistics

When you click the Show statistics button some information about the loaded
object is shown in a message box. This is similar in function to the console
application that was discussed before, but in this case it is integrated in the
forms. It will show the number of vertices and triangles in the highest level of
detail of the model.

1 private void cmdStats_Click (object sender , EventArgs e)
2 {
3 if (_currentObject != null)
4 {
5 ObjectStatistics stats = _currentObject . GetStatistics ();
6 StatisticsLOD lod = stats .LOD[stats .LOD. Count - 1];
7 StringWriter writer = new StringWriter ();
8 writer . WriteLine ("LOD: {0}", lod. Value);
9 writer . WriteLine (" Triangles : {0}", lod. Triangles);

10 writer . WriteLine (" Vertices : {0}", lod. Vertices);
11 MessageBox .Show(writer . ToString ());
12 }
13 }

5.4.5 Change background color

With the Set background color button you can change the color that is used
in the preview for the background. All you have to do is select a new color,
we use the default ColorDialog for that and then pass the new color to the
correct field of the Renderer3DSettingsWrapper class. In this case we set the
BackgroundColor field, but you can also configure many other colors.

1 private void cmdColor_Click (object sender , EventArgs e)
2 {
3 ColorDialog color = new ColorDialog ();
4 if (color . ShowDialog () == DialogResult .OK)
5 {
6 Renderer3DSettingsWrapper settings = new

Renderer3DSettingsWrapper ();
7 settings . BackgroundColor = color . Color ;
8 renderer3DControl1 . Refresh ();
9 }

10 }

In this way you can also change other properties of the preview control, as
there are also fields in the Renderer3DSettingsWrapper class that for example
control if the grid is shown.

6 Support
If you need help in using these libraries in your tool, if the functionality you
want to use is not explained in this manual or if you are missing certain features
for you tool, please contact me by email.

13

mailto:arno@scenerydesign.org

7 User license
(c) 2007-2024 SceneryDesign.org / Arno Gerretsen

These software libraries are distributed without charge to other addon devel-
opers. Redistribution of the original DLL as part of your tool without charge
is allowed. You are NOT allowed to sell these software libraries itself or ask
money for its distribution.

The copyright and any intellectual property relating to this program remain the
property of the author.

The software distributed in this way may represent work in progress, and bears
no warranty, either expressed or implied.

14

	Introduction
	Conditions for using the libraries
	Obtaining the libraries
	Overview of libraries
	Sample code
	Basic object information
	Texture information
	Generate footprint of model
	Render preview of model
	Renderer3DControl
	Load object file
	Change livery
	Show statistics
	Change background color

	Support
	User license

